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What is interval censoring?

Type II (General)

Event is known to occur
between two time points.
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Notation

t = event time
(unobserved)

L = left side of interval

R = right side of interval

Type I (Current status)

Event is known to occur before
or after a single time point:

Left censoring (L = 0)
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What’s the problem with ignoring interval censoring?

Survival time is over-estimated

Suppose time of event ti ∈ (Li ,Ri ] is interval censored

Assuming ti = Ri causes survival time to be over-estimated
(Ri ≥ ti )

Example for patient i

0

(

Li

]

Riti

δ



Definition Problem Methods Key assumption Software

How much does this bias survival estimates?

It depends

Let δ = Ri − ti be the common measurement error and suppose
event times follow survival function S . Size of bias depends on:

Size of measurement error δ

Change in S between times ti and Ri

Example: S is Weibull with shape and scale of 3
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How do we avoid this bias?

Methods for interval-censored data

Use a likelihood proportional to

L =
n∏

i=1

[S(Li )− S(Ri )]︸ ︷︷ ︸
Pr(event between Li and Ri )
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Nonparametric maximum likelihood estimator (NPMLE)

Turnbull estimator of Ŝ (1976): interval censoring counterpart to
Kaplan-Meier

Partitions timeline by all left and right censoring times, and
estimates probability of each partition

· · · · · ·
t0 t1 t2 t3 t4 tm−1 tm tm+1

p1 p2 p3 p4 pm pm+1
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Nonparametric maximum likelihood estimator (NPMLE)

Turnbull estimator of Ŝ (1976): interval censoring counterpart to
Kaplan-Meier

Pros

Consistent (with enough data, the estimate is correct)
Can incorporate right-censored data by setting Ri =∞

Cons

Statistical convergence is slower than Kaplan-Meier (need
more data for a good estimate)
No closed form – requires iterative fitting algorithm
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Nonparametric maximum likelihood estimator (NPMLE)

Side notes

The Turnbull estimator (1976) is an EM algorithm, though
the seminal EM paper was not published until 1977
(Dempster and Waird).

pnew
j =

M step: pnew
j =arg maxpj L(p|q)︷ ︸︸ ︷

1

n

n∑
i=1

(
αijp

old
j∑m+1

l=1 αijpold
l

)
︸ ︷︷ ︸

E step: qij=E[Pr(tj−1<Ti≤tj )]

Faster algorithms exist
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Hypothesis testing with NPMLEs

Comparing survival functions

Very similar to right-censored data

Log rank tests with modified calculations of

dj : number of events at time tj
nj : number at risk at time tj .

Note: formulas for dj and nj very similar to updates for the
Turnbull estimator
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Regression

Common models

Similar to right-censored data, we can fit

Semiparametric

Proportional hazards (Cox)
Proportional odds
Additive hazards

Parametric

Accelerated failure time and generalizations
Piecewise exponential
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Issues for Cox model

Computational

Baseline hazards do not cancel out of likelihood and must be
estimated

Statistical

While baseline hazard converges at n1/3 rate, regression
coefficients still converge at n1/2 rate (Huang and Wellner, 1997)



Definition Problem Methods Key assumption Software

Key assumption: Non-informative interval censoring

Non-informative interval censoring

Except for the requirement that Li < ti ≤ Ri , Li and Ri contain no
additional information about survival time.

Common violation

Sick patients are seen more often than healthy patients, so if
Ri − Li is small, ti is probably closer to Li than Ri (expected
survival time is shorter).

Implications

Estimates of baseline hazard might be wrong. How much does this
affect estimates of regression coefficients?
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Software

R packages

CRAN survival view

Anderson-Bergman (Preprint). icenReg: Regression Models
for Interval Censored Data in R. Available here (also see the
icenReg vignette).

Gómez, G., Luz Calle, M., Oller, R., Langohr, K. (2009).
Tutorial on methods for interval-censored data and their
implementation in R. Statistical Modeling. 9: 259–297.
Available here. (Does anyone have access?)

https://cran.r-project.org/web/views/Survival.html
http://cliffstats.weebly.com/uploads/3/2/2/3/32232977/icenregfinal.pdf
https://cran.r-project.org/web/packages/icenReg/vignettes/icenReg.pdf
http://journals.sagepub.com/doi/pdf/10.1177/1471082X0900900402
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Overview

This appendix outlines the details mentioned in earlier slides. I deal
with the simple case where the time shift δ is the same for all
patients. While not likely to be the case in practice, I think it still
provides some insights.

Notation and assumptions

Let the event times T ∼ F , where F (t) = Pr(T ≤ t). Let
S(t) = 1− F (t) be the survival function and suppose that Ŝn is a
consistent estimator of S for right censored data, such as the
Kaplan-Meier estimator. That is, Ŝn(t)→ S(t) as n→∞. The
subscript indexes Ŝn by the number of observations i = 1, . . . , n.
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Bias from assuming δ = 0

Ignoring interval censoring is equivalent to assuming δ = 0. In this
case, a patient’s survival time is assumed to be Ri even though it
is actually ti = Ri − δ. Consequently Ŝn(Ri ) is an estimate of S
not at time Ri , but at time ti = Ri − δ. That is,

Ŝn(Ri ) = Ŝn(ti + δ)→ S(ti ).

Because S is monotone non-increasing and δ ≥ 0, we have
S(ti ) ≥ S(ti + δ), which causes our estimate to be biased upward.
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Approximating the bias

This gives an asymptotic bias of

biasn(ti + δ) = E[Ŝn(ti + δ)]− S(ti + δ)

→ S(ti )− S(ti + δ). (1)

This shows that bias is a function of both the size of δ and the
derivative of S (if S is nearly constant over (ti , ti + δ) then bias is
near zero). To make this explicit (and assuming the density
f (t) = − d

dtS(t)dt exists at ti ) we can take a first order Taylor
expansion of S(ti + δ) about ti to get that for sufficiently large n,

biasn(ti + δ) ≈ S(ti )− (S(ti )− δf (ti ))

= δf (ti ). (2)

I show (1) in earlier slides, though (2) is very similar.
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